Меню

Дизельные двигатели японских автомобилей. Дизельный двигатель для toyota

Обслуживание автомобиля

В середине 2000-х годов инженеры Тойота заканчивают разработку нового дизельного двигателя, в результате на конвейере автоконцерна запускается производство двигателей Тойота 1AD-FTV и 2AD-FTV. Эти силовые агрегаты, рабочим объемом 2 и 2,2 литра, соответственно, становятся самым массовым тойотовским дизелем конца 2000-х для автомобилей Toyota RAV4 и Toyota Corolla Verso, Avensis. В нашем обзоре мы рассмотрим особенности более редкого, по сравнению с двухлитровой версией, двигателя 2 AD-FTV (2,2 литра).

Характеристики и особенности конструкции

Двигатель 2AD-FTV - это четырехцилиндровый рядный силовой агрегат, имеющий по 4 клапана на цилиндр (с гидрокомпенсаторами), цепной привод механизма ГРМ, оборудованный турбиной системы VGT (изменяемая геометрия направляющего аппарата) с масляным охлаждением и системой питания Common Rail (DENSO). Отличительная особенность дизельного двигателя тойота 2,2 литра - наличие балансирного механизма, приводимого в движение шестерней коленчатого вала. В основу мотора легла новая для того времени, а теперь используемая большинством автопроизводителей, "одноразовая конструкция" - легкосплавный блок цилиндров с чугунными гильзами, не предусматривающая капитальный ремонт. Тем не менее, эти моторы считаются достаточно надежными и позволяют автомобилю выкатывать до 400-450 тыс. километров.


Форсунки Denso, которыми комплектуются дизели 2AD-FTV, зарекомендовали себя как очень надежный элемент топливной системы. Они не доставляют проблем до 200-250 тысяч км пробега, а после этого, в большинстве случаев, легко проходят восстановление-профилактику и продолжают исправно работать. Правда, и стоят форсунки этой фирмы немало - одна новая форсунка обойдется вам около 20 000 рублей. После модификации двигателя в 2009 году (новый двигатель получил маркировку 2AD-FHV) в топливной системе стали использоваться пьезоэлектрический форсунки, которые уже не поддаются восстановлению.

Типичные неисправности

Самая распространенная неисправность дизельных двигателей тойота 2,2 литра 2AD-FTV, выпущенных до 2009 года, - эрозия блока двигателя на стыке с ГБЦ в результате взаимодействия металла и охлаждающей жидкости. В результате на многих двигателях жидкость из системы охлаждения начинает попадать в масло, как следствие - дорогостоящий капитальный ремонт. Хотя мотор 2AD-FTV устанавливался на несколько моделей Тойота, проблемы с эрозией блока чаще всего встречались на Toyota Avensis 2-го поколения, часть автомобилей была отозвана производителем для проведения профилактики - шлифовки блока и замены прокладки. Наличие или отсутствие такой проблемы также напрямую зависит и от условий эксплуатации двигателя.



Конструктивно двигатели 2AD-FTV относятся к "прожорливым" в отношении масла силовым агрегатам, т.е. предполагают достаточно высокий расход масла, а это в свою очередь, влечет за собой целый ряд потенциально возможных и регулярно встречающихся неприятностей, связанных с повсеместным образованием нагара. Из-за этого сокращается ресурс клапана ЕГР, он требует регулярной чистки. При использовании некачественного масла нагар быстро образуется и на поршнях, что увеличивает риск серьезных повреждений механической части силового агрегата.

Также к типичным сложностям, возникающим в процессе эксплуатации дизельного двигателя Тойота 2,2 2 AD-FTV можно отнести:

  • течь прокладки ГБЦ;
  • течь помпы;
  • течь масла из-под прокладки поддона.

В целом, двигатель 2AD-FTV нельзя отнести к "миллионникам", но нормальный для дизельного мотора ресурс этот силовой агрегат отрабатывает. В нашем интернет-магазине вы можете приобрести контрактный двигатель тойота 2,2 2AD-FTV 2008 года из Испании с подтвержденным оригинальным пробегом 92 тысячи км. Состояние двигателя отличное, автомобиль-донор поврежден пожаром со стороны багажника - моторный отсек и двигатель не затронут.

Одна из самых массовых силовых установок Toyota дизельный двигатель 2C-T отлично знаком владельцам «праворуких» автомобилей японского автогиганта. За почти 30 летнюю историю 2C-T приобрел противоречивую репутацию. Однако оставался бессменным флагманом компании с 1986 по 2001 год.

В ногу со временем

Разработка нового поколения дизельных двигателей в середине 80-х годов прошлого века для компании Toyota стала логичным ответом на рост популярности этого типа силовых установок в Европе. Турбированный 4-цилиндровый 2C-T увидел свет в 1986 году в комплектации новой Toyota Camry. Он был разработан специально для тяжелых седанов и микроавтобусов.

Низкий расход топлива и высокий крутящий момент достаточно мощного по тем временам турбодизеля позволили быстро завоевать популярность как на внутреннем рынке Японии так и за его пределами.

Однако в России эти двигатели попадают преимущественно с азиатского рынка. Популярность 2C-T связана с его невысокой ценой на вторичном рынке и хорошей экономичностью. Кроме этого двигатель неприхотлив к горючему и вполне комфортно себя чувствует на российском топливе. К достоинствам 2C-T можно отнести отсутствие электроники, которая значительно упрощает диагностику и ремонт, а также высокий ресурс двигателя при умеренных эксплуатационных нагрузках.

Горячий характер

Для дизелей этой марки характерна проблема с системой с охлаждения, которая только усугубляется на турбированной версии. С одной стороны сама система не справляется с охлаждением двигателя при больших нагрузках. С другой — в системе охлаждения не редко возникают воздушные пробки. В результате частого перегрева двигателя появляются трещины на головке цилиндров, ставшие не приятной особенностью этих агрегатов. Большинству подержанных двигателей этого типа поступающих в Россию требуется ремонт с заменой головки цилиндров.


Контрактный дизель 2C-T

Некоторые специалисты считают, что двигатель перегревается из-за того, что расширительный бочек для охлаждающих жидкостей установлен ниже головки цилиндра. Если поднять его на несколько сантиметров проблема частично будет решена.

Для того чтобы максимально продлить срок жизни 2C-T стоит по максимуму избегать эксплуатации на оборотах выше 3000 об/м. это почти на треть ниже максимального значения. Однако в подобном щадящем режиме 2C-T может проработать невероятно долго.

Несмотря на свои недостатки, самые первые силовые установки этой модели до сих пор встречаются на российских дорогах, составляя конкуренцию более современным и технологичным агрегатам.

Технические характеристики

2C-T по современным меркам достаточно скромные. Однако двигатель вполне оправдывает возложенные на себя задачи его мощности и крутящего момента хватает и на городское маневрирование и на длительные междугородние переезды. Если конечно не забывать об уязвимой системе охлаждения.

Объем 2 л. (1974 см. куб)
Количество цилиндров 4
Количество клапанов 8 (SOHC)
Мощность (лс/об) 85/4500
Крутящий момент (н-м/об.мин 235/2600
Степень сжатия 23
Диаметр/ход поршня (мм) 86/85
Средний расход топлива 7-8 л. (в зависимости от модели автомобиля
Ресурс двигателя 500 тыс. км

2C-T – дизель на все времена

Несмотря на вышеописанные недостатки, двигатель оказался отличным дополнением к тяжелым седанам и микроавтобусам и стоял на вооружении компании 15 лет.

Он устанавливался на микроавтобусы:

  • TownAce;
  • LiteAce.

а также на легковые автомобили:

  • Caldina 1994-1997 год;
  • Carina, Carina E 1996-1998 год;
  • Corona 1996-1997 год;
  • Vista 1985-1994 год.

Не смотря на то, что двигатель официально снят с производства 12 лет назад его популярность остается очень высокой. В частности нередко этот дизель используют для тюнинга внедорожников. Например, российских УАЗов. Так же эти двигатели устанавливают вместо отслуживших срок агрегатов других моделей и производителей. А это значит история легендарного и противоречивого 2C-T еще далеко не окончена.

Как платить за БЕНЗИН В ДВА РАЗА МЕНЬШЕ

  • Цены на бензин растут с каждым днем, а аппетит автомобиля только увеличивается.
  • Вы бы рады сократить расходы, но разве можно в наше время обойтись без машины!?
Но есть совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год! Подробнее об этом

Нетрудно заметить, что новый движок очень заметно прибавил в характеристиках, вплотную приблизившись к бензиновым двигателям того же объема по мощности и значительно превосходя их по моменту. Однако надо сразу отметить, что по динамическим показателям машина с таким мотором по-прежнему им заметно уступает.

Есть несколько вариантов этого же двигателя:

  • вариант этого же двигателя с меньшим объемом — 2.494cc, называется 2KD-FTV ;
  • базовый вариант, рассматриваемый ниже и используемый на автомобиле RAV4 CLA20;
  • вариант 1CD-FTV на Avensis отличается обычной турбиной, клапаном EGR с вакуумным приводом, стандартным генератором, обычным натяжителем ремня и несколько меньшей мощностью;
  • вариант 1CD-FTV на Previa 30 главным образом отличается наличием балансирного механизма с шестеренным приводом.



[свернуть]

Конструкция 1CD-FTV

Топливная система

Раскрыть...


1 — электронный блок управления двигателем, 2 — усилитель форсунок, 3 — датчик давления топлива, 4 — топливная рампа, 5 — ограничитель давления, 6 — обратный клапан, 7 — форсунка, 8 — ТНВД, 9 — топливный бак, 10 — датчики.

Также применяется специальное устройство для охлаждения топлива (Fuel Cooler), которое расположено под днищем автомобиля.


[свернуть]

ТНВД

Раскрыть...

ТНВД в схеме Common Rail абсолютно не похож на традиционный Bosch VE.



1 — датчик температуры топлива, 2 — SCV (э/м перепускной клапан), 3 — регулятор давления, 4 — плунжер B, 5 — диск привода, 6 — плунжер A, 7 — толкатель, 8 — подкачивающий насос.

В корпусе размещены подкачивающий насос, управляющие клапаны и сам двукхкамерный насос высокого давления, направляющий диск которого представляет собой эллипс.


2 — SCV (э/м перепускной клапан), 3 — регулятор давления, 4 — плунжер B, 5 — диск привода, 6 — плунжер A, 7 — толкатель, 8 — подкачивающий насос, 9 — напорный клапан, 10 — обратный клапан.

При ходе всасывания плунжеры, следуя профилю направляющего диска, расходятся, SCV открывается и топливо поступает в напорную камеру.

1 — напорная камера, 2 — плунжер, 3 — направляющий диск, 4 — топливо, 5 — SCV, 6 — толкатель, 7 — плунжер.

После того, как диск повернулся на 90 градусов, SCV перекрывает входной канал и начинается ход нагнетания. Объем поступающего к плунжеру топлива регулируется при помощи SCV, благодаря чему блоку управления удается поддерживать требуемое давление в топливной рампе.

[свернуть]

Топливная рампа

Раскрыть...

В топливной рампе установлен датчик давления топлива и механический ограничитель давления.

Датчик давления конструктивно выполнен одноразовым и не должен вворачиваться повторно, а регулировка ограничителя давления выполняется однократно еще на заводе.

[свернуть]

Форсунки

Раскрыть...




1 — электромагнитный клапан, 2 — обмотка, 3 — управляющая камера, 4 — игла, 5 — поршень, 6 — топливо.

Конструкция форсунки 1CD-FTV не столь изощренная, как на свежем дизеле от Isuzu (4JX1), но тем не менее сильно отличается и от обычной дизельной, и от обычной бензиновой. При таком большом давлении в рампе простой электромагнитный клапан слишком слаб, поэтому управление форсункой электрогидравлическое.

В закрытом состоянии клапан удерживается пружиной, при этом топливо в управляющей камере удерживает в нижнем положении поршень, который, в свою очередь, через пружину фиксирует в закрытом положении иглу (давление топлива, воздействующее на иглу снизу, недостаточно для ее открытия).

При подаче тока на обмотку, клапан втягивается и открывает канал, по которому топливо про ходит к нижней части поршня. В результате уменьшается давление в управляющей камере и нарастает давление под поршнем, в результате чего тот поднимается. Одновременно с этим открывается запорная игла форсунки и происходит впрыск топлива.

Форсунка представляет собой сложный механизм, построенный на тонком балансе сил пружин и давления топлива и его дросселировании в тонких каналах. Качество российской солярки известно, поэтому на долгое поддержание этого баланса можно не рассчитывать.

[свернуть]

Особенности впрыска

Раскрыть...

Двухфазный впрыск топлива призван максимально уменьшить выбросы вредных веществ. На рисунке ниже показана осциллограмма работы двигателя 1CD-FTV на холостом ходу:

  • 1 - предварительный (или «пилотный») впрыск топлива;
  • 2 - основной впрыск топлива.

По времени эти фазы впрыска топлива также различаются:


При предварительном («пилотном») впрыске топлива в камеру сгорания впрыскивается небольшое количество топлива (1 до 5 кубических миллиметров). Впрыск может осуществляться в пределах 90 градусов до ВМТ. Особенность: если впрыск происходит в пределах от 20 до 45 градусов до ВМТ, то в этом случае вполне возможен быстрый выход из строя самого двигателя, его механической части, так как при этих углах впрыска топливо не успевает испариться и в виде капель будет оседать на стенках цилиндра и поверхности поршня, что приведет к разжижению моторного масла.

Обычный «дизель» работает шумно и с копотью. Применение предварительного впрыска дает возможность получения более плавной «кривой» увеличения давления, что влияет и на шумность работы двигателя, и на выброс вредных отработавших газов. Это также уменьшает период задержки воспламенения основной фазы впрыска топлива.

Очень важное условие для снижения шумности двигателя играет точное временное и массовое дозирование топлива для первой фазы впрыска топлива (предварительный впрыск). В случае нарушения этих условий возрастает и шумность двигателя, и его дымность. Все это имеет своей конечной целью снижение выброса вредных отработавших газов.

При нажатии на педаль газа вид впрыска начинает меняться:


На изображении выше видно, как при нажатии на педаль газа двухфазный впрыск (позиция 1) переходит в однофазный (позиция 2). Меняется также и время между импульсами (см. ниже):




Время открытия форсунки при однофазном впрыске при 1250 RPM составляет 1.09 ms (погрешность измерений около 10 мкс):


Есть у этого двигателя знакомая нам по «обычному» впрыску т.н. «отсечка» (набираем обороты, а потом резко «бросаем» педаль газа):


«Отсечка» для разных регулировок тоже разная, но в принципе должна начинаться от 1800 оборотов и продолжаться до 1200 оборотов. А вот далее аналогию проводить уже нельзя, потому что после «отсечки» вид впрыска существенно отличается от «обычного»:


Мы видим «пачки» импульсов, при помощи которых система управления плавно переводит двигатель в работу на ХХ.

При запуске двигателя также используется двухфазный впрыск топлива:


Это позволяет добиться надежности «холодного» пуска двигателя, стабильности оборотов на еще «не горячем» двигателе и снижения эмиссии CH_x.
Временные показатели на рисунке не проставлены вследствии того, что они будут различными для различных температур, сортов «дизельного» топлива, применяемого моторного масла и так далее. По этим же причинам величина оборотов двигателя при «холодном» запуске будет также различная.

На рисунке указаны «двухфазный впрыск - 1» и «двухфазный впрыск - 2»:

  • «Двухфазный впрыск - 1» - впрыск, который происходит в две стадии, но без возможности перехода его в однофазный впрыск.
  • «Двухфазный впрыск - 2» - впрыск, который происходит в две стадии, но с возможностью перехода его в однофазный (основной) впрыск.

Здесь все зависит от многих факторов, но основным является температура охлаждающей жидкости и температура топлива.

[свернуть]

Система управления

Раскрыть...

1 — датчик положения педали акселератора, 2 — от замка зажигания, 3 — сигнал стартера, 4 — сигнал кондиционера, 5 — от датчика скорости, 6 — от генератора, 7 — от разъема DLC3, 8 — электронный блок управления двигателем, 9 — топливный бак, 10 — датчик температуры топлива, 11 — топливный фильтр, 12 — ТНВД, 13 — клапан SCV, 14 — датчик давления топлива, 15 — топливная рампа, 16 — промежуточный охладитель (интеркулер), 17 — реле блока управления форсунками, 18 — блок управления форсунками (усилитель форсунок), 19 — расходомер воздуха, 20 — датчик атмосферной температуры, 21 — клапан EGR, 22 — форсунка, 23 — охладитель EGR, 24 — пневмопривод управления турбокомпрессором, 25 — датчик положения распределительного вала, 26 — клапан управления разрежением (пневмопривода турбокомпрессора), 27 — вакуумный насос, 28 — датчик температуры охлаждающей жидкости, 29 — датчик положения коленчатого вала, 30 — дроссельная заслонка,31 — датчик температуры воздуха на впуске, 32 — датчик давления наддува, 33 — электропневмоклапан датчика давления наддува, 34 — свеча накаливания, 35 — реле свечей накаливания.


1 — датчик давления топлива, 2 — электропневмоклапан (датчика давления наддува), 3 — свеча накаливания, 4 — усилитель форсунок, 5 — датчик положения распределительного вала, 6 — электронный блок управления двигателем, 7 — форсунка, 8 — расходомер воздуха, 9 — датчик давления наддува, 10 — разъем DLC3, 11 — датчик положения педали акселератора, 12 — клапан EGR, 13 — датчик температуры воздуха на впуске, 14 — дроссельная заслонка, 15 — датчик температуры охлаждающей жидкости, 16 — клапан управления разрежением, 17 — датчик положения коленчатого вала.

Система управления стала практически полностью электронной. Педаль акселератора больше не связана механически с ТНВД (ее положение контролируется датчиком), на шкивах коленвала и распредвала появились, соответственно, датчики положения коленчатого и распределительного валов (первый также является и датчиком ВМТ).

Впрыск топлива в цилиндры осуществляется в две стадии — сначала небольшой заряд, затем основной, благодаря чему обеспечивается более равномерное нарастание давление в цилиндре, снижаются вибрации и шумы.

Управление системой рециркуляции отработавших газов и дроссельной заслонкой осуществляется не пневмоприводами, а электродвигателями.

1 — дроссельная заслонка, 2 — привод дроссельной заслонки, 3 — клапан EGR, 4 — охладитель EGR, 5 — выпускной коллектор, 6 — впускной коллектор, 7 — электронный блок управления двигателем.

Применение турбокомпрессора с изменяемой геометрией позволило управлять давлением наддува в зависимости от условий работы двигателя (частота вращения, объем впрыскиваемого топлива, атмосферное давление, температура охлаждающей жидкости).

Датчик давления наддува способен измерять и барометрическое давление — для этого служит электропневмоклапан, переключающий забор воздуха на атмосферу в те моменты, когда не происходит впрыск топлива (на холостом ходу или при замедлении).

Появились и новые диагностические коды, ранее не встречавшиеся на тойотовских дизелях:

  • 34 (2) — Система турбонаддува
  • 34 (3) — Привод лопаток турбокомпрессора (заклинивание в закрытом состоянии)
  • 34 (4) — Привод лопаток турбокомпрессора (заклинивание в открытом состоянии)
  • 51 — Цепь выключателя стоп-сигналов
  • 71 — Цепь управления EGR
  • 89 — Блок управления электрооборудованием кузова

[свернуть]

Генератор

Раскрыть...

В 2000-2002 годах Toyota начала переход на генераторы нового типа. Новый статор выполнен по схеме «сегментный проводник», где вместо одной непрерывной обмотки в тело статора внедрены спаянные между собой сегменты. В результате снизилось сопротивление и уменьшились размеры статора.

Второе нововведение — наличие двух обмоток, фазы которых смещены друг относительно друга на 30 градусов, благодаря чему повышается стабильность выходного напряжения и уменьшаются электромагнитные наводки.



1 — регулятор напряжения, 2 — замок зажигания, 3 — блок управления двигателем, 4 — индикатор зарядки АКБ.

Кроме того, в шкив генератора установлена обгонная муфта, позволяющая снизить воздействие на ремень в переходных режимах. Натяжение ремня осуществляется хитроумным автоматическим натяжителем.

[свернуть]

Головка блока цилиндров

Раскрыть...

Головка блока, традиционно изготавливаемая из алюминиевого сплава, имеет несколько радикальных отличий от ГБЦ обычных дизелей.

Во-первых, уже из наименования двигателя понятно, что здесь не два, а четыре клапана на цилиндр и два распредвала. Благодаря этому увеличилась площадь выпускных и выпускных каналов, улучшилось наполнение цилиндров.

Во-вторых, «D-4D » означает «четырехтактный дизель с системой Common Rail и непосредственным впрыском топлива в цилиндр » (иначе — с неразделенными камерами сгорания). Если ранее форсунка и свеча накаливания «выходили» в вихревую камеру (в ГБЦ), то теперь форсунка подает топливо прямо в цилиндр.

Если и раньше тойотовские турбодизели не отличались долговечностью головок, то как теперь покажут себя новые, с еще более тонкими перемычками клапанов — покажет время.

[свернуть]

Блок цилиндров

Раскрыть...

Блок цилиндров по-прежнему отливается из чугуна и не имеет гильз, небольшие изменения коснулись только толщины стенок и ребер жесткости.


[свернуть]

Поршень

Раскрыть...

Поршень довольно существенно уменьшился в диаметре по сравнению с серией «C» (двигатель теперь стал «длинноходным»), в него переместилась и камера сгорания. Другие новшества — нирезистовая вставка под верхнее компрессионное кольцо, канал для охлаждения и нанесенное на юбку поршня антифрикционное покрытие.


[свернуть]

Коленчатый вал

Коленвал выполнен, как обычно, полноопорным, с закаленными током высокой частоты шейками.

Привод ГРМ

Раскрыть...

Механизм с двумя распредвалами и четырьмя клапанами на цилиндр приводится при помощи ремня, вращающего вал выпускных клапанов, а затем уже через шестерни приводится и распредвал впускных клапанов.

От выпускного распредвала приводится также и вакуумный насос (хорошо бы более надежный, нежели на дизелях серии «C»).


Регулировка зазора по-прежнему осуществляется при помощи шайб, расположенных над толкателем (для регулировки нет необходимости снимать валы).

Ремень привода ГРМ теперь получил автоматический гидронатяжитель (что не слишком хорошо для долговечности), а заменять его рекомендуется каждые 150 тысяч километров (а вот это неплохо).

Раскрыть...

Остается только надеяться, что самое слабое место серии «C» было все же улучшено с появлением нового двигателя. Заметное отличие — в расширительном бачке теперь поддерживается избыточное давление, так что охлаждающая жидкость не контактирует с воздухом, а значит не испаряется и не стареет столь быстро.

Впуск и выпуск

На впуске теперь установлен «паук» с воздуховодами равной длины и резонатором, дроссельная заслонка получила электропривод, появился воздухо-воздушный интеркулер (промежуточный охладитель).

Для уменьшения выбросов оксидов азота (NOx) применяется система EGR, которая за счет перепуска некоторого количества отработавших газов на впуск снижает максимальную температуру в цилиндре.

Количество перепускаемых газов регулируется клапаном EGR с шаговым электродвигателем вместо вакуумного привода и жидкостным охлаждением (что позволяет снизить температуру ОГ и увеличить их перепуск).


[свернуть]

Турбокомпрессор

Раскрыть...

Турбокомпрессор двигателя 1CD-FTV существенно отличается от традиционного.


Привычного механизма перепуска газов здесь нет, зато появилась система изменения геометрии, построенная на открытии-закрытии направляющих лопаток, через которые газ проходит к турбине (т.е. угол установки лопаток на турбине постоянный). Поскольку скорость вращения турбины зависит от скорости течения газов, то на холостом ходу, когда количество выхлопных газов мало, лопатки «закрываются» с помощью пневмопривода, образуя относительно небольшой зазор, через который газы проходят на выпуск.

При небольшой нагрузке пневмопривод перемещает управляющее кольцо, при этом поворачиваются шарнирно соединенные с ним лопатки, которые частично закрываются. В результате поддерживается наиболее подходящая скорость истечения газов через турбину.


При высокой нагрузке лопатки перемещаются в открытое положение, благодаря чему поддерживается требуемое давление наддува.


[свернуть]

Недостатки 1CD-FTV

Раскрыть...

В целом 1CD-FTV не содержит серьезных технических ляпов. Традиционное отсутствие ремонтных размеров делают двигатель практически одноразовым, но это уже скорее фирменный знак Тойоты.

Однако данный двигатель предназначен для использования в гейропе . Качество отечественного дизельного топлива очень нестабильно, в нем могут присутствовать вода и механические включения. Вода в виде мелкодисперсной смеси быстро выводит из строя форсунки. Мелкие инородные тела, попав в ТНВД, становятся превосходным абразивом, вызывая постепенную потерю давления в топливной системе и затем поломку насоса.

Также нарекания вызывает нестабильная работа датчика, отвечающего за давление масла в системе. При штатных показателях, определяемых тестовым манометром, датчик часто сигнализирует о аварийной ситуации.